Name:									

Preliminary Chemistry

Lesson 6 **Water**

In Theory. This booklet is your best friend.

Success is Contagious. Synergy Chemistry.

garyzhanghsc@gmaiil.com

Summary of Key Words

Account

Account for: state reasons for, report on. Give an account of: narrate a series of events or transactions

Analyse

Identify components and the relationship between them; draw out and relate implications

Apply

Use, utilise, employ in a particular situation

Assess

Make a judgement of value, quality, outcomes, results or size

Calculate

Ascertain/determine from given facts, figures or information

Clarify

Make clear or plain

Classify

Arrange or include in classes/categories

Compare

Show how things are similar or different

Construct

Make; build; put together items or arguments

Contrast

Show how things are different or opposite

Deduce

Draw conclusions

Dofina

State meaning and identify essential qualities

Demonstrate

Show by example

Describe

Provide characteristics and features

Discuss

Identify issues and provide points for and/or against

Distinguish

Recognise or note/indicate as being distinct or different from; to note differences between

Evaluate

Make a judgement based on criteria; determine the value of

Examine

Inquire into

Explain

Relate cause and effect; make the relationships between things evident; provide why and/or how

Extract

Choose relevant and/or appropriate details

Extrapolate

Infer from what is known

Identify

Recognise and name

Interpret

Draw meaning from

Investigate

Plan, inquire into and draw conclusions about

Justify

Support an argument or conclusion

Outline

Sketch in general terms; indicate the main features of

Predict

Suggest what may happen based on available information

Propose

Put forward (for example a point of view, idea, argument, suggestion) for consideration or action

Recall

Present remembered ideas, facts or experiences

Recommend

Provide reasons in favour

☼ Revision

Question 1
Explain the concept of 'like dissolves like'. (2 marks)
Question 2
Identify two conditions for solubility. (2 marks)
Question 3
Explain why large molecules are unable to dissolve in water.

Description Lesson Dotpoints

By the end of the lesson, you should understand the following concepts:

Covalent Network Lattices

- Explain changes, if any, to particles and account for those changes when the following types of chemicals interact with water:
 - A covalent network structure substance such as silicon dioxide

Polymers

- Explain changes, if any, to particles and account for those changes when the following types of chemicals interact with water:
 - A substance with large molecules, such as cellulose or polyethylene

Precipitation Reactions

• Explain changes, if any, to particles and account for those changes when the following types of chemicals interact with water:

Ion Movement

- Describe a model that traces the movement of ions when solution and precipitation occur
- Identify the dynamic nature of ion movement in a saturated dissolution

Precipitation Equations

- Construct ionic equations to represent the dissolution and precipitation of ionic compounds in water
- Present information in balanced chemical equations and identify the appropriate phase descriptors (s), (l), (g) and (aq) for all chemical species

1. Covalent Network Lattices

CHECKPOINT:

- Explain changes, if any, to particles and account for those changes when the following types of chemicals interact with water:
 - A covalent network structure substance such as silicon dioxide

♥ What are Covalent Lattices?

	and silicon dioxide		
•	How are atoms held together in a covalent lattice?		
•	Covalent bonds are extremely strong, so covalent solids are very ha	rd	
•	Are covalent solids soluble or insoluble?		

Covalent Network Solids are giant covalent substances like diamond, graphite

Silicon Dioxide

•	Describe the covalent bonds that occur in silicon dioxide.
•	What type of intermolecular forces will silicon dioxide exert on water molecule?
•	Silicon dioxide is used in industry to make glass due to its many properties. Explain why.

2. Polymers

CHECKPOINT:

- Explain changes, if any, to particles and account for those changes when the following types of chemicals interact with water:
 - A substance with large molecules, such as cellulose or polyethylene

♥ What is a Polymer?

- A polymer is made up of individual unit molecules called _______
- Monomers bind together other monomers to form a repeating chain molecule called a polymer
- The process of making polymers is called _________
- Cellulose and polyethylene are two examples of polymers

Addition Polymerisation - Polyethylene

- Polyethylene is formed through a process called addition polymerisation
- What is the monomer in polyethylene called?

• Below is an example of the ethylene molecule:

- Label the double bond on the ethylene molecule
- Addition polymers are formed by adding double bonded molecules together

Explain the process of addition polymerisation.

- During the polymerisation process:

2

3

1 Double bond breaks apart

Extra electrons allow formation of single bonds

Ethene molecules join together to form polyethylene

$$C = C + C =$$

ethene + ethene

polythene

• What type of intramolecular forces bond the polymer together?

Properties of Polyethylene

• There are two types of polyethylene as shown below:

A molecule of linear polyethylene, or HDPE

A molecule of branched polyethylene, or LDPE

HDPE is known as High Density Polyethylene. Why is it given this name?

• LDPE is known as High Density Polyethylene. Why is it given this name?

- Uses of polyethylene include squeeze bottles, piping and credit cards etc
- Identify the type of intermolecular forces between polyethylene
- Polyethylene is ______ in water.

•	Based on the a	bove informati	on, explain w	hy it is a prefe	rred material	

Condensation Polymerisation - Cellulose

- A condensation polymer is a **naturally occurring** polymer
- It is formed by two or more molecules joining together and a small molecule is eliminated during the process
- For the case of cellulose a _____ molecule is eliminated
- Cellulose is formed by joining glucose ______ together as shown below:

• Label the eliminated molecule in the diagram above

Properties of Cellulose

• Cellulose is created by plants to form fibres that hold the plants together

- Cellulose is able to align with each other have the ability to cross link with each other
- The repeating unit in cellulose contains numerous _______
- Is cellulose water soluble? Explain.

 Therefore, cellulose is able to align and crosslink into water insoluble crystalline lattices or ______

Applications 2.1

Using an example of a large covalent network and explain why it is insoluble in water. (3 marks)
Question 2 (James Ruse Trial 2004 - Qu 24 Modified)
Discuss the metasticles a successful formalism all the with sufference to the
Discuss the potential as a raw material for making plastic with reference to its structure and water solubility potential. (3 marks)

Question 3 (Independent 2006 - Qu 22 Modified)
Compare the structure of an ionic substance with that of polyethylene. (3 marks)

3. Precipitation Reactions

CHECKPOINT:

 Identify some combinations of solutions which will produce precipitates, using solubility data

What is Precipitation?

 Precipitation reactions occur when cations and anions in aqueous solution combine to form an:

- A cation is a _____ charged ion
- An anion is a _____ charged ion
- Whether or not such a reaction occurs can be determined by using the **solubility rules** for common ionic solids.
- Can precipitation reactions occur if there is only one substance in solution?

• The solubility of ionic salts is dependent on the intermolecular forces between ionic bonds and water as shown below:

A. soluble - ionic bonds weaker than collective ion - water interactions

Dissociates into ions Strong electrolyte

B. insoluble - ionic bonds stronger than collective ion-water interactions

Soluble Salts

• All **fully soluble** salts are listed below (fill in the table):

Ion	Chemical Formula
Group 1 Cations	(N/A)
Ammonium	
	NO_3^-
	CH ₃ COO ⁻
Bicarbonate	HCO ₃

• All **soluble salts with exceptions** are listed below (fill in the table):

Ion	Chemical Formula	Slightly Soluble	Insoluble
Halides			
	S0 ₄ ²⁻		

♥ Insoluble Salts

• All **insoluble salts with exceptions** are listed below (fill in the table):

Ion	Chemical Formula	Slightly Soluble	Always Soluble
	SO ₃ ²⁻	N/A	Group 1 and NH ₄ ⁺
	CO ₃ ²⁻	N/A	
	PO ₄ ³⁻	N/A	Group 1 and NH ₄ ⁺
Sulfur		N/A	Group 1, Group 2 and NH ₄ sulfides
Oxygen		N/A	
Hydroxide	OH ⁻		Group 1 and NH ₄

4. Ion Movement

CHECKPOINT:

- Describe a model that traces the movement of ions when solution and precipitation occur
- Identify the dynamic nature of ion movement in a saturated dissolution

Movement of Ions

- Ionic substances dissolve in water, it breaks up into ions which move
 in solution
- When a solution is fully saturated, ions continue to break away from the crystal lattice
- What does it mean for a solution to be fully saturated?
- Even though a solution is fully saturated ions can continue to break away.
 Explain this phenomenon.

- There are many ways to track the dissolving and precipitation process of a substance
- By using a radioactive substance that emits beta radiation the substance can be tracked
- Substances like lead can be radioactive

Model of Moving Ions

- An experiment using radioactive lead can be used to track ion movement
- Radioactive lead emits beta radiation
- Lead by itself will not dissolve in water, however **lead nitrate** can form a saturated solution in water

• Desci	ou might obse	erve if you t	racked the	movement o	of radioactive

• Eventually the same amount of lead ions in the solution is radioactive as in the solid

Dynamic Nature of Ions

- Using radioactive lead nitrate as an example it can be clearly seen that lead ions move back from solution the solid as solid lead ion is dissolved
- A dynamic balance occurs when dissolution and precipitation occur at

Are there any changes to concentration?

We call this overall process called a **dynamic equilibrium** Write a chemical equation for lead nitrate undergoing a dynamic equilibrium.

5. Precipitation Equations

CHECKPOINT:

- Construct ionic equations to represent the dissolution and precipitation of ionic compounds in water
- Present information in balanced chemical equations and identify the appropriate phase descriptors (s), (l), (g) and (aq) for all chemical species

Writing Precipitation Equations

• Equations that represent precipitation reactions can be written in one of three ways:

- This is your normal chemical equation in which the reactants and products are written as if they are **molecules**

- In this case all reactants and products are written as soluble (aqueous) ions, only the **precipitate** is written as if it were a molecule
- Can gases or liquids be written as aqueous in ionic equations?
- Spectator ions are also written in ionic equations, what are they?

3 Net Ionic Equation

- This equation shows the reactants and products that explicitly take part in the reaction

- Why are spectator ions NOT included in this type of equation?
se Study – Sodium Chloride and Silver Nitrate
Consider the reaction between two solutions which have sodium chloride $(NaCl_{(aq)})$ in one and silver nitrate $(AgNO_{3(aq)})$ in the other
What are the possible products for this precipitation reaction?
Sodium Nitrate -> NaNO3 Silver chloride -> AgCl
Using the solubility rules we determine that is soluble
Silver chloride is insoluble. Explain why.
Write the Molecular Equation for the reaction:
- Remember that species in solution must include the (aq), the precipitate must include the (s)
Write the Ionic Equation for the reaction:
Write the Net Ionic Equation for the reaction:

Applications 4.1

Question 1

Write molecular, complete ionic, and net ionic equations for the following reactions that may produce precipitates. Use NR to indicate that no reaction occurs.

a)	Potassium iodide and silver nitrate
b)	Ammonium phosphate and sodium sulfate
c)	Aluminum chloride and sodium hydroxide
d)	Lithium sulfate and calcium nitrate

e)	Iron(II) sulfate and barium hydroxide
_	estion 2
	the following solutions determine whether a precipitation reaction will occur reaction does occur write a balanced neutral species equation for the reaction
a)	Potassium chloride and zinc nitrate
b)	Ammonium bromide and lead nitrate
c)	Ammonium sulphide and magnesium acetate
d)	Strontium chloride and zinc sulfate

Question 2

Determine the solutions that you would mix to produce the following precipitates.	
a)	Lead Sulfate
b)	Iron(II) sulfide
c)	Magnesium hydroxide