Name: \qquad

Preliminary
 Chemistry

 Lesson 6 \& 7

 Lesson 6 \& 7
 Water

In Homework. This booklet your best friend.

34

Success is Contagious. Synergy Chemistry.

www.hscsynergyeducation.weebly.com

Summary of Key Words

Account

Account for: state reasons for, report on. Give an account of: narrate a series of events or transactions

Analyse

Identify components and the relationship between them; draw out and relate implications

Apply

Use, utilise, employ in a particular situation

Assess

Make a judgement of value, quality, outcomes, results or size

Calculate

Ascertain/determine from given facts, figures or information
Clarify
Make clear or plain
Classify
Arrange or include in classes/categories

Compare

Show how things are similar or different

Construct

Make; build; put together items or arguments

Contrast

Show how things are different or opposite

Deduce

Draw conclusions

Define

State meaning and identify essential qualities

Demonstrate

Show by example
Describe
Provide characteristics and features

Discuss

Identify issues and provide points for and/or against

Distinguish

Recognise or note/indicate as being distinct or different from; to note differences between

Evaluate

Make a judgement based on criteria; determine the value of

Examine

Inquire into

Explain

Relate cause and effect; make the relationships between things evident; provide why and/or how

Extract

Choose relevant and/or appropriate details

Extrapolate

Infer from what is known

Identify

Recognise and name

Interpret

Draw meaning from

Investigate

Plan, inquire into and draw conclusions about

Justify

Support an argument or conclusion

Outline

Sketch in general terms; indicate the main features of

Predict

Suggest what may happen based on available information

Propose

Put forward (for example a point of view, idea, argument, suggestion) for consideration or action

Recall

Present remembered ideas, facts or experiences

Recommend

Provide reasons in favour

PART A: MULTIPLE CHOICE

Question 1 (Cranbrook 2007-Qu 11)

What is the concentration of a solution if 11.54 g of pure barium hydroxide is dissolved in exactly 250 mL water in a volumetric flask?
a) $6.74 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
b) $1.68 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
c) $2.69 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
d) $2.89 \mathrm{~mol} / \mathrm{L}$

Question 2

The density of water at $25^{\circ} \mathrm{C}$ is $1.00 \mathrm{gcm}^{-3}$. The density of ice at $0^{\circ} \mathrm{C}$ is $0.917 \mathrm{gcm}^{-3}$. What volume change would occur if an ice cube of mass 9.50 g , initially at $0^{\circ} \mathrm{C}$, melted to form liquid water with a final temperature of $25^{\circ} \mathrm{C}$?
a) An increase in volume of 0.86 L would occur
b) An decrease in volume of 0.86 L would occur
c) An increase in volume of 0.79 L would occur
d) An decrease in volume of 0.79 L would occur

Question 3

A solution is made by dissolving 0.1 mol of sodium chloride, and 0.1 mol of calcium chloride in water to make a volume of 200 mL of solution.

What are the ionic concentrations in $\mathrm{mol} / \mathrm{L}$ of this solution?

	$\left[\mathrm{Na}^{+}\right]$	$\left[\mathrm{Ca}^{2+}\right]$	$\left[\mathrm{Cl}^{-}\right]$
a)	0.1	0.1	0.2
b)	0.5	0.5	1.0
c)	0.5	0.5	1.5
d)	0.2	0.2	0.6

Question 4 (Independent 2004-Qu 11)

The reaction between barium chloride and potassium sulfate solutions produces a precipitate of barium sulfate:

$$
\mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{KCl}
$$

If 50 mL of $0.50 \mathrm{~mol} / \mathrm{L} \mathrm{BaCl}_{2}$ was reacted with excess $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution. How many moles of $\mathrm{BaSO}_{4(s)}$ would be precipitated?
a) 0.025 mol
b) 2.33 mol
c) 25 mol
d) 233 mol

Question 5 (Independent 2005-Qu 15)

What types of bonds are present in alkenes?
a) Single covalent bonds only
b) Double covalent bonds only
c) Single and double covalent bonds
d) Covalent and hydrogen bonds

Question 6 (HSC)

When 13.08 g of pure zinc reacts with excess dilute hydrochloric acid, the volume of dry hydrogen gas given off at 298 K and 101.3 kPa pressure is -
a) 2.45 L
b) 4.89 L
c) 9.79 L
d) 12.23 L

Question 7 (HSC)

0.01 mole of a chloride of an element Z requires exactly 20 mL of $1.00 \mathrm{~mol} / \mathrm{L}$ silver nitrate solution for complete reaction. The formula of the chloride of Z is -
a) ZCl_{4}
b) ZCl_{4}
c) ZCl_{4}
d) ZCl

PART B: SHORT RESPONSE

Question 1 (Exam Choice 2011 - Qu 27)

A typical 500 mL bottle of mineral water contains the following information about the concentration of ions in the water.

Substance	Concentration $(\mathbf{m g} / \mathbf{L})$
Calcium	25.0
Magnesium	4.5
Potassium	1.0
Sodium	6.5
Hydrogencarbonate	103
Sulfate	10.5
Nitrate	7.0
Chloride	5.5

a) Calculate the total mass of ions with a change of $2+$ in this bottle of water.
(2 marks)
\qquad
\qquad
\qquad
\qquad
b) 200 mL of this water is added to 50 mL of freshly squeezed lemon juice.

Assuming the lemon juice contains no sulfate ions, calculate the concentration of sulfate ions in this mixture. (in mol/L) (3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2

You may need to use the information in the table below to answer this question.

Anion or cation present in salt	General Solubility Rule	Main exceptions
Group I metal	All salts soluble	No exceptions
Ammonium	All salts soluble	No exceptions
Nitrate	All salts soluble	No exceptions
Chloride	Most salts soluble	Lead(II); mercury(II), silver
Sulfate	Most salts soluble	Lead(II); mercury(II), silver, barium
Carbonate	Most salts insoluble	Group I and ammonium lations
Hydroxide	Most salts insoluble	Group I and ammonium cations, barium

Two methods for preparing a salt are:
Method 1: Add an excess of insoluble base, or an excess of metal to an acid, and when the reaction is complete, remove the excess by filtration.

Method 2: Mix two solutions and obtain the salt by precipitation.
A student wants to prepare copper (II) hydroxide. Identify which method is appropriate, the reagents (reactant) required, and write an equation for the reaction.
(3 marks)
\qquad
\qquad
\qquad
\qquad

Question 3 (Exam Choice 2008-Qu 26)
A student transferred 1.35 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(s)}$ and 1.35 g of $\mathrm{Na}_{2} \mathrm{CO}_{3(s)}$ to separate beakers, and dissolved each in 100 mL of water. The student then mixed the two solutions, producing a blue precipitate.
a) Write a chemical equation for this reaction. (1 mark)
\qquad
\qquad
b) Calculate the mass of CuCO_{3} that could be formed in this reaction. (3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (Independent 2004-Qu 22)
a) Calculate the mass of barium chloride crystals $\left(\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ required to prepare 200 mL of solution with a concentration of $0.50 \mathrm{~mol} / \mathrm{L}$. (3 marks)
\qquad
\qquad
\qquad
\qquad
b) This solution is diluted to a volume of 500 mL . Determine the chloride ion concentration in the diluted solution. (2 marks)
\qquad
\qquad

Question 5 (HSC)

2.08 g of anhydrous barium chloride was dissolved in water to make 50 mL of solution and then added to 50 mL of an aqueous solution containing 2.84 g of anhydrous sodium sulfate. A white precipitate formed.
a) Write an ionic equation for the reaction forming the precipitate. (1 mark)
\qquad
\qquad
b) What is the mass (in grams) of the precipitate formed? (You may leave the answer as a fraction.) (2 marks)
\qquad
\qquad
\qquad
\qquad
c) Calculate the concentration of sulfate ions in the final solution. (3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6

a) What volume of 4.50 M HCl can be made by mixing 5.65 M HCl with 250.0 mL of 3.55 M HCl ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) To what volume should you dilute 133 mL of an $7.90 \mathrm{M} \mathrm{CuCl}_{2}$ solution so that 51.5 mL of the diluted solution contains $4.49 \mathrm{~g} \mathrm{CuCl}_{2}$?
c) 1.00 L of a solution is prepared by dissolving 125.6 g of NaF in it. If I took 180 mL of that solution and diluted it to 500 mL , determine the molarity of the resulting solution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d) Container A holds a solution that is 80% alcohol while container B holds a solution that is 20% alcohol. How many liters of the solution in container A are needed to produce 12 liters of a solution that is 60% alcohol?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

